Transaction Processing over XML (TPoX) Benchmark:

Workload Driver Overview and Usage

Version 1.2, June, 2008

Irina Kogan ikogan@ca.ibm.com
Matthias Nicola mnicola@us.ibm.com
Vitor Rodrigues vrodrig@us.ibm.com
Mike Liu mikezliu@ca.ibm.com
Kevin Xie kxie@ca.ibm.com

http://tpox.sourceforge.net/

(R O = V= ST 2
2 INStAlEtioN INSIIUCLIONSc.veieieieieieeie sttt s sne e eneenneas 2
21 Installation 0n 64-Dit ALX ... 2
A 1S 7 = (o) o g T I L GRS 3
2.3 Installation 0N WINAOWS.......cc.ooiiiiiiiinininie e 3
3 WOrkIOad DIiVEr USAQE.cceeeeieieieiie ettt 4
4 Transactions and Transaction TEMPIALEScceeveeeeieereceeeece e 7
5 Workload DesCription File ..o s 7
5.1 Example 1 (files containing transactions, no parameters, no weights)............... 8
52 Example 2 (transaction WEIGNES)........ceeereeieieieresie e 8
5.3 Example 3 (directory containing tranSactions)cccceeveeveeieeceesieeseese e 9
54 Example 4 (parameter markers for QUENES)........covirirerereeieenieniese e 9
55 Example 5 (parameter markers for document and sub-document level inserts)11
56 Example 6 (parameter markers for deletes)oovvirieieieievesc e 13
5.7 Example 6 (parameter markers for updates).........ccevvveeveenieeiienicce e 14
5.8 Example 7 (parameter markers for workloads other than TPoX)..................... 15
6 Program OULPULcueeiiie ittt ssa e s s sbe e sbe e e snbeeensneeeas 16

© Copyright IBM Corporation, 2008.

This document is made available under the terms of the Common Public License 1.0 as
published by the Open Source Initiative (OSI): http://www.opensource.org/licenses/cpl1.0.php

TPoX Benchmark: Workload Driver Overview and Usage 2

1 Overview

2

The TPoX workload driver (performance testing application) is implemented in Java. It is
general enough to exercise concurrent database workloads other than TPoX.
The driver spawns 1 to n parallel threads each of which simulates a database user that
connects to the database and submits a mix of XQueries (or SQL/XML queries), inserts,
updates, and deletes (all of which are referred to as “transactions”).
The transactions are picked from a set of predefined templates.
= A transaction template is a query, insert, update or delete statement in which
parameter markers are used instead of literal predicate values.
= At run time, parameter markers in the transaction templates are replaced by
actual values drawn from configurable random value distributions.
= Configuration parameters are used to indicate the workload mix; i.e., each
transaction is assigned a weight in the workload mix.
Optionally, a seed for the random number generator can be specified to ensure fully
reproducible benchmark runs.
A benchmark run is limited either by a time limit or by the number of transactions that
each thread (“user”) executes.
Performance metrics are collected and a report is produced (on screen / files):
= Min, max, avg and total elapsed time for each transaction template
= Total throughput in transactions per minute
= Number of completed transactions per user
The current version of the workload driver supports DB2 9, but can be adapted to support
other database systems.
The workload driver comes with an initial set of transactions. New transactions can easily
be added.

Installation Instructions

Installation instructions are provided for 64-bit AlX, Linux, and Windows.

2.1

Installation on 64-bit AlX

The requirements are AIX 64 bit and java 1.4.2+ for 64 bit .

These are the installation instructions:

1. Unzip TPoX.zip into your home directory and change to the TPoX/WorkloadDriver

directory:
unzip TPoX.zip
cd TPoX/WorkloadDriver

Make sure that the variable $HOMBpoints to your home.

In order to be able to run the workload driver, $JAVADIR, $CLASSPATHS$LIBPATH and
$LD_LIBRARY need to be set properly.

Here is how they can be set when DB2 is used. The settings for other database systems
might be similar. The parts that are likely to be different are the ones in bold-italic.

TPoX Benchmark: Workload Driver Overview and Usage 3

DB2 only :
export DBS= DB2

export DBS_HOME= $HOME/sqgllib
export TPOX_HOME=$HOME/TPoX

export JAVADIR =$DBS_HOME/java/jdk64/jre/bin

export
CLASSPATH$DBS_HOME/java/db2jcc.jar:$DBS_HOME/java/db2jcc_license_cisuz.j

ar :..$TPOX_HOME/WorkloadDriver/plugins/commons-cli-
1.0.jar:$TPOX_HOME/WorkloadDriver/classes:$TPOX_HOME/$DBS/classes

export LIBPATH =$DBS_HOME/lib : .

export LD_LIBRARY_PATH=/usr/lib:/lib :$DB_HOME/lib :$LD_LIBRARY_PATH

Now you are ready to run the program. The help (-h) option shows which options are available:
java -classpath $SCLASSPATH WorkloadDriver -h

The TPoX/WorkloadDriver directory contains several sample @run* scripts with suggested
invocations of the workload driver and the “properties” directory which contains some workload
description files that can be customized or just used as samples. They point you to the
transactions that come with the TPoX package.

2.2 Installation on Linux
The installation on Linux is analogous to the installation on AIX.

DB2 only :
If you use Java that comes with DB2 (currently Java 1.5 for most platforms), please note that its
location on Linux is slightly different from that on AIX:

export JAVADIR =$DB_HOME/java/jdk64/jre/bin

2.3 Installation on Windows

On Windows, it is usually enough to just set the $SCLASSPATH (assuming that the right version of
java is installed).

DB2 only :
set DBS= DB2

set DBS_HOME=C:\Program Files\IBM\SQLLIB

set TPoX_HOME=D:\TPoX

set
CLASSPATH".;%DBS_HOME%\java\db2jcc.jar;%DBS_HOME%\java\db2jcc_license_cu

Jjar ;% TPoX_HOME%\WorkloadDriver\plugins\commons-cli-
1.0.jar;%TPoX_HOME%\WorkloadDriver\classes; % TPOX_HOME%\%DBS%\classes”

TPoX Benchmark: Workload Driver Overview and Usage 4

echo %CLASSPATHYwill show the current class path. You can run the workload driver using that
class path like this:

java -classpath <text produced by running echo %CLA SSPATH%Y%>
WorkloadDriver —h

Alternatively, you can set your class path permanently by right-clicking on My Computer ,
selecting Properties , choosing the Advanced tab and clicking on Environment Variables

at the bottom. Go to System Variables and add the variable CLASSPATHcontaining the text
from echo %CLASSPATH% above, but without quotation marks. (If the system CLASSPATH
variable already exists, just edit or extend it so that the path is valid for other applications too.)
Now “java WorkloadDriver —h " should work fine on your computer without using the
-classpath option for the java command.

3 Workload Driver Usage

The workload driver accepts the following command line parameters.

usage: Workl oadDri ver [-c comment] [-d database] [-cl [] [-fto # seconds]
[-ht host] [-pc n] [-pd # seconds] [-sc schema] [-h] [-id user id] [-r #
seconds] [-ti # seconds] [-s seed] [-m MB] [-dbs db system] [-cc #
transactions] [-pt port] [-tr # transactions] [-v level] [-u # users]
[-pw password] [-tt # milliseconds] [-w file name]

- m<MB> memory for —pc and —cl computations

- v <level> 2-verbose output, 1-less verbose, O-stats only

- pc <n> computes the n-th percentiles of response times

- r <# seconds> ramp-up time

- ¢ <comment> comment about the workload

- cC <# transactions> commit count (per user)

-cl <I> computes the confidence intervals with confidence
level ‘I

- d <database> database name

- dbs <db system> database system
- ft o <forced time out> forced time out when #transactions is specified

-h help

-ht <host> host where DB resides

- i d <user id> valid user id

- pd <# seconds> statistics print delay between intervals

- pt <port> port to be used to connect to the DB

- pw<password> password of the user with the specified id

- s <seed> random seed for reproducibility purposes

- sc <schema> default schema for all database objects refered in
a workload

-ti <# seconds> limits execution time (in seconds), overrides -tr

-tr <#transactions> limits #transactions executed per user
-tt <# milliseconds> think time (in ms) for each user
- u <# users> number of concurrent threads/users

- w<file name> name of the file containing workload description

TPoX Benchmark: Workload Driver Overview and Usage 5

When -h is used for help, no other parameters need to be provided. Otherwise, the only required
parameter is —w to provide the workload description file. This file defines the workload that the
driver should execute (see section 5).

If no values are provided for the remaining parameters, the following defaults are used:

= “localhost” for host (if the database resides on a host different from where the workload
driver is executed, use the IP address or the remote hostname, e.g. myserver.sam.com)

= “tpox” for database name

= “DB2” for database system

= 654321 for seed (generally, it can be any number of java long type)

= For DB2, the default database schema name is the user id used to make the database
connection

= O for verbosity level

= 1 for the number of concurrent users

= 240 seconds for execution time limit, if neither execution time nor a limit for the number of
transactions is specified; timing starts after all users have connected to the database.

= 0 milliseconds for think time (use think time if you would like to put every “user”/thread to
sleep before it moves on to the next transaction)

= 0 seconds for the print delay between intervals for outputting statistics (use it if you would
like the statistics to be printed every few seconds, as described for stats.txt in section 6).

= 0 seconds for the ramp-up period (use it if you would like to allow for some time for the
system to warm up; more info is in section 6)

= 1 for the commit count (i.e., committing after each transaction by default; larger commit
counts may improve performance)

= Forced time out is not used unless explicitly specified. Forced time out can be useful if
the benchmark run is limited by the number of transactions per user (-tr). If the execution
of some statement is excessively long, the benchmark will still be terminated and results
reported when the forced time out is reached.

= 50 (MB) memory for —pc and —cl computations

The following options may be used with an optional parameter value:

= |f the option —pc is used without a parameter value, the default value is 90
= If the option —cl is used and no parameter value is specified, the default value is 95.

The workload driver assumes that the database is already created. The workload driver can and
should be used to populate the database tables (typically with —u and —tr).

DB2 only : If the host/port options are used to run a workload against a DB2 server on a different
machine, the following commands should be executed on the DB2 server machine:

db2set db2comm=tcpip

db2 update dbm cfg using svcenane 36460 -> use the actual port # instead of 36460
db2stop

db2start

TPoX Benchmark: Workload Driver Overview and Usage 6

The available service names (svcename) can be found in the file /etc/services on an AIX
machine and in C:\WINNT\system32\drivers\etc\services on a Windows machine (the location
of this file may vary depending on the version of Windows installed).

If the database resides on the same machine as the application, the lines above may not be
required, depending on your setup, but could simply be added at the beginning of the @run*
scripts mentioned in section 2.1.

TPoX Benchmark: Workload Driver Overview and Usage 7

4 Transactions and Transaction Templates

Each transaction must be provided in a separate text file. A transaction can consist of one or
multiple statements (query, insert, update or delete). Each statement in a transaction must be
terminated by the percent sign (%) as the statement separator. When the workload driver
executes the transactions, it issues a commit after each one; i.e. after the last statement of each
transaction (unless a different commit count is specified in the —cc option). The isolation level
currently used is “Read Committed”.

DB2 only : XQueries can have the keyword XQUERY as the first word of the statement. If they do
not, the program prepends this keyword automatically (only if the database is DB2).

The transactions provided to the workload driver are typically transaction templates, i.e. they
contain either numbered parameter markers denoted by |1, |2, etc. or standard SQL parameter
markers denoted by “?”. Based on the workload description file, the workload driver replaces
these parameter markers with actual literal values.

Here is an example of an XQuery transaction template:

declare default element namespace "http://tpox-
benchmark.com/custacc";
for $cust in db2-fn:xmlcolumn("CUSTACC.CADOC")/Cust omer
where $cust/@id= | 1 and $cust/Nationality=" | 2"
return
<Customer_Profile CUSTOMERID="{$cust/@id}">
{$cust/Name}
{$cust/DateOfBirth}
{$cust/Gender}
{$cust/Nationality}
{$cust/Addresses}
{$cust/EmailAddresses}
</Customer_Profile>
%

This query has two parameter markers for which literal values can be supplied from different input
sets (see section 5). The quotes around |2 indicate that the literal value will be used as a string,
while |1 must be replaced by a number.

Just like SQL-style comments begin with ‘--, XQuery comments are denoted by ‘(: :)’. The
workload driver simply removes the comments before sending the statements to the database.

The workload driver can also execute select, delete, update, and insert SQL statements. The
workload driver is not intended to execute DDL statements such as create statements for
database, tables, indexes, etc., though it is generally possible. It assumes that all required
database objects already exist.

5 Workload Description File

A workload description file (aka workload properties file) tells the workload driver which
transaction templates to execute, and how. A workload description file can either specify a
directory that contains all transaction templates or list the transaction templates explicitly. The
latter approach allows for more flexibility, so we focus on that in the following examples.

TPoX Benchmark: Workload Driver Overview and Usage 8

5.1 Example 1 (files containing transactions, no pa rameters, no weights)
Here is an example of workload description file that specifies three transaction templates:

numOfTransactions = 3

t1 = newqueries/getCustomerProfile.xqr
t2 = newqueries/listOrders.xqr

t3 = newqueries/listSecurities.xqr

numOfTransactions is a required keyword to specify the number of transactions (unless a
directory containing all transactions is specified, as shown in section 5.3). The “=" sign must be
used for all key/value pairs. The path to the files containing the transactions can be specified
relative to the WorkloadDriver* directory (as the directory newqueries above), but can also be
absolute.

In this example, the transaction templates are not expected to have parameter markers and each
of the three transactions occurs by default equally often in the resulting workload mix. The
specification of parameter markers and transaction weights is shown next.

5.2 Example 2 (transaction weights)

In Example 1, all transactions have the same relative weight in the workload; i.e., they will be
executed equally often if the benchmark run is long enough. For more detailed workload
modeling, here is how weights can be assigned to the individual transactions:

numOfTransactions = 3

t1 = newqueries/getCustomerProfile.xqr
wl =50

t2 = newqueries/listOrders.xqr
w2 =20

t3 = newqueries/listSecurities.xqr
w3 =30

Whenever a thread (“user”) picks the “next” transaction to execute, getCustomerProfile.xgr will
have a probability of 0.5, listOrders.xqr a probability of 0.2, and listSecurities.xqr a probability of
0.3. The weights are used to define the workload mix . This is particularly useful to control the
read/write ratio in a workload.

If wlis specified, the program assumes that all transactions will have weights assigned to them.
All weights must add up to 100 (i.e., 100% total), otherwise an error is thrown.

The transaction can be specified in any order. There is also no fixed order for the execution of
transactions. Once a transaction completes, the submitting user (thread) picks another
transaction according to the probabilities expressed by the weights. A transaction "completes"
when the entire result (of all of its statements) has been fetched by the thread.

! Here and later, WorkloadDriver directory = $HOME/TPoX/WorkloadDriver.

TPoX Benchmark: Workload Driver Overview and Usage 9

5.3 Example 3 (directory containing transactions)
The examples above showed how to explicitly identify the transaction templates in a workload

description file. A simpler alternative is to just specify a directory where all transaction templates
are located:

directory = newqueries

numOfTransactions does not need to be specified in this case. All files in the directory specified
will be used (numOfTransactions = # of files).

When this “directory option” is used, the weights and parameter markers can be specified in
exactly the same way as discussed above. The number and order of the transaction templates
are defined by the alphabetical order in which they appear in the directory.

5.4 Example 4 (parameter markers for queries)

The statements in the transaction templates can have parameter markers , which are substituted
by actual values during the workload driver execution, based on parameter marker specifications
in the workload file. For example:

numOfTransactions = 3

t1 = newqueries/listSecurities.xqr
plil= file|linput/security_types.txt

t2 = newqueries/getCustomerProfile.xqr
p2|1 = uniformn 1000- 3000
p2]2= ids| 1002-20001

t3 = newqueries/listOrders.xqr

The pipe character (“|") is the divider for different parts of a parameter marker specification. All
parts are required. The “p1|1” denotes the first parameter of the first transaction, “p1|2” denotes
the second parameter of the first transaction, and so on.

In the example above, the 1% transaction has one parameter marker, the 2" has two, and the 3"
has none. The value for the parameter marker of the 1* transaction is a string value picked
randomly from the file i nput / security_types. txt. The value for the 1 parameter marker of
the 2" transaction is an integer, uniformly distributed between 1000 and 3000. If a statement in
the 2™ transaction includes a condition such as “... where $cust/tax = |17, the |1 is replaced by a
random integer between 1000 and 3000. The value of the 2" parameter marker of the 2"
transaction is a range of ids uniformly distributed between 1002 and 20001.

The difference between a ‘uniform ’ and an ‘ids ’ specification is as follows: ‘uniform ' allows
you to specify an arbitrary but fixed interval of numbers; an ‘ids ’ specification should match the
range of actual id values in the initial database population (customer IDs in this case) and this
range will be dynamically extended by the workload driver as more documents are inserted.

The uniform distribution can be used for both integer and decimal numbers. By adding the
“decimal " keyword to the end of the parameter marker specification, we create a decimal number
uniform distribution instead of an integer number uniform distribution. E. g., consider the following
parameter marker specification:

TPoX Benchmark: Workload Driver Overview and Usage 10

p2|]1 = uniforn10. 05-99. 1| deci nal

This parameter marker will have a uniform distribution between 10.05 and 99.1. All the decimal
numbers in this interval have equal probability of being used as the parameter marker value.

Please note that the “integer ” keyword is also allowed. The specification of uni f or m 1000-
3000 is equivalentto uni f or nj{ 1000- 3000] i nt eger

In summary, there are currently four ways to specify values for parameter markers:

1.

Uniform distribution for numbers, where a fixed range of possible values is specified (as
for p2|1 above). This is indicated by the keyword “uniform ” (with an optional “decimal”
keyword at the end when the intention is to use a decimal interval instead of an integer
one).

Uniform distribution of customers IDs, orders IDs, or account IDs that are used in
predicates of queries, deletes or updates. This is indicated by the keyword “ids”. The
respective ID ranges are dynamically extended during the benchmark run as more
documents are inserted. More detail is provided in Section 5.6 in the context of deletes.

A file containing input values (as for p1|1 above). This is indicated by the keyword “file .
The path to the file can be relative to the WorkloadDriver directory or absolute. The file
must contain a list of values, each value on a separate line. The workload driver removes
whitespaces on both ends of each line as well as empty lines. Values from the file are
drawn randomly (i.e., according to a uniform distribution). Here is an example of what can
be contained in such a file:

Stock Fund

Bond Fund

Mixed Fund

Identical values for two parameter markers. For example, p2|2 = p2|1 means that p2|2
always uses the same value as p2|1, not just the same distribution or input file. See
Section 5.7 for more detail.

Further distributions for parameter marker values can be added in a future version of the
workload driver, such as non-uniform distributions and distributions for date or decimal values.

In a workload properties file you can first specify all transactions, then all weights and then all
parameter markers (or do this in any other order), for example:

numOfTransactions = 2

t1 = newqueries/getOrder.xqr
t2 = newqueries/listMoreSecurities.xqr

p1|1 = uniform|1000-3000
p2|1 = uniform|100-200
p2|2 = file|input/security_types.txt

w1=80
w2=20

The workload driver also supports SQL and SQL/XML queries with parameter markers denoted
by question marks. Example:

TPoX Benchmark: Workload Driver Overview and Usage 11

SELECT XMLQUERY

(‘declare namespace o="http://www.fixprotocol.org/F IXML-4-4";
for $ord in $odoc/o:FIXML
return $ord/o:Order’
PASSING odoc AS "odoc")

FROM order

WHERE XMLEXISTS

(‘'declare namespace o="http://www.fixprotocol.org/F IXML-4-4",
$odoc/o:FIXML/o:Order[@ID=$id]

'PASSING odoc AS "odoc", cast (? as varchar(10)) as "id")

%

If the query above is defined as t1 and the range of order ids for the parameter marker is
103,283 - 1,103,282 (all orders), p1|1 should be specified as ids|103283-1103282 . Each *?”
should have a parameter marker specification assigned to it. If there were, say, three “?”-denoted
parameter markers in this query, we would have to specify p1|1, p1|2 and p1|3, where p1|1 would
refer to the first “?”, p1|2 to the second and p1|3 to the third. If a transaction is a multi-statement
transaction, then numbering continues across statements.

5.5 Example 5 (parameter markers for documentand s ub-document level
inserts)

There are three tables that are used in the TPoX benchmark: custacc , order and security , each
having a single column of type XML. These three tables contain four collections: custacc , order,
security and account . The first three collections are stored in the table with the same name. The
account collection is stored in the custacc table. Each customer (stored in custacc) has one or
more accounts. All accounts for one customer are stored in that customer's document in the
custacc table. A new account is inserted when either a new custacc document is inserted or
when a customer opens a new account (an update performing a sub-document level insert).

The workload driver supports XML inserts into the three TPoX tables as follows.

The insert template statements themselves do not contain workload driver-specific parameter
markers (|1, |2, etc.), but a single SQL parameter marker (?). For example, any of the following
could be insert transaction templates:

insert into custacc values (?) %

insert into custacc values(xmlvalidate(? according to xmlschema
id tpox.custacc)) %

At run time, the “?” will be replaced by an actual XML document that is to be inserted. The
documents will be read from one or multiple directories in the file system. File systems often don’t
behave nicely if millions of files are stored in a single directory. Therefore, our data generation
scripts can distribute documents over many directories (“batches”). We suggest using a sufficient
number of directories for data generation such that a single directory does not contain more than
100,000 files (some types of file systems may handle larger numbers well). The workload driver is
able to feed insert statements with documents from many directories.

For example, if the following insert transaction for the custacc collection is the 2™ transaction in a
workload description file, then this is how p2|1 can be specified to insert XML documents from
one or multiple directories:

p2|1 = fi |l es|custacc|data/custacc/batch-|1-5]1000]500

What we see on the right side of the “=" sign is this:

TPoX Benchmark: Workload Driver Overview and Usage 12

fi | es|<collection name>|<path/directory prefix>|<1st dir #>-<last
dir#>|<docs per dir>|<1lst document id>|[<file name prefix>]

The “files” keyword indicates that this parameter marker specification describes the range and
location of input documents. p2|1 above specifies that the following documents are inserted from
the following directories:

Directory Documents

data/custacc/batch-1 custacc500.xml — custacc1499.xml
data/custacc/batch-2 custacc1500.xml — custacc2499.xml
data/custacc/batch-3 custacc2500.xml — custacc3499.xml
data/custacc/batch-4 custacc3500.xml — custacc4499.xml
data/custacc/batch-5 custacc4500.xml — custacc5499.xml

The directory prefix is relative to the WorkloadDriver directory. In this example, there are five
directories (1-5) containing 1000 Custacc documents each (<docs per dir>=1000). The workload
driver appends the directory numbers to the directory prefix. The first document is custacc500.xml
(<1% doc id> = 500) and the file names are expected to be <collection name><doc id>.xml.

If the XML documents reside in a single directory (which is likely only for the security documents,
or for very small benchmark runs), you can also specify just one directory for the source
documents. For example:

p3|1 = files|security|data/security| 1-1]20833|1
which is equivalent to
p3|1 = files|security|data/security| 1]20833|1

In both cases, data/security is assumed to be the data directory and no number is appended to
the directory prefix. In general, if <1st dir#>-<last dir#> is specified as 1 or 1-1, no
number is appended to the directory prefix.

Another example: if you want to insert documents only from the directory

data/custacc/batch-2 , you can do so in any of the following ways:
p2|1 = files|custacc|data/custacc/batch-|2-2|1000]|5 00
p2|1 = files|custacc|data/custacc/batch-|2|1000|500
p2|1 = files|custacc|data/custacc/batch-2|1|1000|50 0

The insert statement templates for order and security are similar to the template for custacc. To
insert a specific number of documents into a table, your workload should containa single
insert transaction and you should use the —u and —t r options to the workload driver rather
than limit the workload run by time. The number of documents inserted equals the number

of users times the number of transactions per user. For example: -u 83 —tr 251 would
insert all 20833 security document.

Although TPoX was developed to store XML data using the database XML type, you can also
insert XML documents into CLOB columns. This feature was introduced for comparison purposes
between inserting XML into an XML column and into a CLOB column.

The only difference from the XML inserts is that the “files” keyword is replaced with the
“filesclob " keyword. Please remember that when “filesclob " is specified, your table column must
be of type CLOB and not of type XML.

The usage of the workload driver on the workloads other than TPoX is explained in section 5.8.

TPoX Benchmark: Workload Driver Overview and Usage 13

5.6 Example 6 (parameter markers for deletes)

Delete templates typically use regular SQL parameter markers (?) rather than workload driver-
specific parameter markers (|1, |2, etc.). Example:

DELETE FROM custacc
WHERE XMLEXISTS

(‘declare namespace ns = "http://tpox-benchmark.com /custacc”;
$cadoc/ns:Customer[@id=$id]'
PASSING cadoc AS "cadoc", cast (? as integer) as "i d") %

At run time, the “?” is replaced by an actual value. For now, only customer and order ids are used
to select documents for deletion. More interesting conditions are possible. A TPoX workload must
not include deletions from the security table, since the number of securities is fixed (20,833).

If the delete transaction for the custacc table is the 2" transaction in the workload properties file,
then this is how p2|1 can be specified:

p2|1 = i ds|custacc|1002-101001
What we see on the right side of the “=" sign is this:
i ds|<table>|<start id>-<end id>

The <table> has to be custacc or order . It can also be security if the transaction isn’t a
delete. (The use of these 3 predefined table names can be overridden as shown in section 5.8).

The TPoX data generation package produces the following start (lowest) id attribute values:

Document Type |Path Start Id
Custacc /Customer/@id 1002
Order [FIXML/Order/@I1D 103282
Security /Security/@id 10000

For example, if you have inserted 100,000 custacc documents for the initial database population,
custaccl.xml — custacc100000.xml, the range of customer ids is 1002-101001 (<start id>

is 1002 and <end id> is 101001). This way each document in the table is considered for
delete, and with equal probability.

The “ids” keyword indicates that the parameter marker specification provides the initial range for
documents that can be deleted in the table <table name> . If the workload also contains inserts
into the table <table> , then the workload driver dynamically extends the <end id> to include
the newly inserted documents. The <end id> keeps getting updated to <end id> + the number
of documents inserted. This reduces the probability of trying to delete documents that have
already been deleted. The “ids” parameter markers can also be used for updates as well as for
queries. Although there are no deletions from the security table (the number of securities is
fixed), an “ids” parameter marker can well be used for querying and updating securities.

Please note that although ids|account is supported in this version of TPoX, it should be used
with care. The reason for this is that account ids are not dense in this release and the random
number generator may return non-existent account ids from the specified range. Before the
dense account ids are supported in TPoX, we recommend using ids|custacc and updating the
first account of the specified customer. See U20penAccount.xqr at the end of section 5.7.

TPoX Benchmark: Workload Driver Overview and Usage 14

The old-style dummy updates (replacing a document by itself) are still supported for backwards-
compatibility.

5.7 Example 6 (parameter markers for updates)

Sub-document level updates are now supported in TPoX, in concordance with the W3C XQuery
Update Draft published at http://www.w3.0rg/TR/xqupdate/. Example:

UPDATE security
SET sdoc = XMLQUERY
(‘'declare default element namespace "http://tpox-benchmark.com/security";
transform
copy $secdoc := $doc
modify
let $price := $secdoc/Security/Price
let $newlasttrade :=
$price/PriceToday/Open*$tradecoefficient
return

do replace value of

$price/LastTrade with $newlasttrade,
do replace value of

$price/Ask with $newlasttrade*$askcoefficient,
do replace value of

$price/Bid with $newlasttrade*$bidcoefficient)

return $secdoc'

PASSING sdoc AS "doc", CAST(? AS DOUBLE) as "tradecoefficient",
CAST(? AS DOUBLE) as "askcoefficient", CAST(? AS DOUBLE) as
"bidcoefficient")

WHERE XMLEXISTS

(‘'declare default element namespace "http://tpox-benchmark.com/security";
$sdoc/Security[Symbol=$symbol]’

PASSING sdoc AS "sdoc”, CAST(? AS VARCHAR(10)) AS "symbol") %

For a given symbol, the above statement updates the values for the elements LastTrade, Ask and
Bid.

Again, standard (‘?’) parameter markers are used. Delete, update and select statements can
have any number of them. In case of the statement above, the specification for four parameter
markers is required:

tl = ../DB2/xqupdates_pm/ U3SecurityPrice. xgr

pl|1 = uniform | 0.95-1.05 | decimal

p1|2 = uniform | 1.0001-1.01 | decimal

pl|3 = p1|2

pl|4 =file | ../WorkloadDriver/input/security_symb ols.txt

The specification for p1|3 says that exactly the same value is used for the 3" parameter marker
as for the second. This way the same value will be used for $askcoefficient and $bidcoefficient.

In the previous example only value updates are being done in the XML document, but you can
also use XQuery Update language to remove, replace or insert a new XML node into an existing
node in your document. Let's show an example:

TPoX Benchmark: Workload Driver Overview and Usage 15

UPDATE custacc
SET cadoc = XMLQUERY (
'declare default element namespace "http://tpox-benchmark.com/custacc";
transform
copy $c := $doc
modify
(: don't add the account if it exceeds the max of seven accounts :)
if (count($c/Customer/Accounts/Account) < 7)
then do insert
$acct
into $c/Customer/Accounts
else ()
return $c'
PASSING cadoc AS "doc", XMLCAST(? AS XML) AS "acct")
WHERE XMLEXISTS
(‘'declare default element namespace "http://tpox-benchmark.com/custacc";
$cadoc/Customer[@id=$id]’
PASSING cadoc AS "cadoc", CAST (? AS DOUBLE) AS "id")
%

In this example, we are inserting a new account into a custacc document. (Remember that a
custacc document can have multiple accounts.) This transaction is described in the properties
file as follows:

t2 = ../DB2/xqupdates_pm/ U20penAccount . xqr
p2|1= fil es| account |../generatedXML/CUSTOM/account/batch-|1-54|10000]|1
p2|2= ids|custacc|1002-3001001

Please note the use of the “files” keyword. The “files” keyword can be used not only to insert
new documents into a table but also to perform sub-document updates. The file referenced by
this parameter specification is a valid XML file that contains an account and will be inserted into
the Accounts elements of the updated document.

5.8 Example 7 (parameter markers for workloads othe r than TPoX)

You can freely specify the number and names of the tables used in a workload. This is useful if
you want to run some workload other than TPoX.

For example, this is what acordinsert.properties may look like:

numOfTransactions = 1
numOfTables = 1

tbl = acord
tl =inserts/insertAcord.sql
pl|1 = files|acord|data/acord|1|78|1] Acor d103Response

This tells us that there is only a single table used in the workload. The table is called “acord ” and
there are 78 XML documents for insertion, all located in a single directory. The documents are
named Acord103Responsel.xml, Acord103Response2.xml, and so on. Acor d103Response is
the <file name prefix> which allows you to insert documents whose file names prefix is
different from the table name.

Now the acord table is the one for which the ‘ids ’and ‘files ' parameter marker specifications
can be defined.

TPoX Benchmark: Workload Driver Overview and Usage 16

nunCf Tabl es, t b1, t b2, etc. are reserved keywords. If numOfTables is not specified in the
.properties file, the program assumes that a TPoX workload is run and that there are three
tables (custacc, order, and security).

In the current implementation of the workload driver, the table specified for insert can only contain
a single XML column (unless a default value is provided for the other XML column(s)).

6 Program Output

The output can be found in the directory WorkloadDriver/output/output<timestamp> (assuming
that the program was run from the WorkloadDriver directory). The <timestamp> is the starting
time of the program run (e.g., 2005_09_19 1603). You may need to manually remove old output
directories that you no longer need.

The following 6 output files can be produced. The output in stats.txt, stats_per_user.txt and
output.txt is also displayed on the screen.

1) stats.txt

This file is always produced (unless the program terminates with an exception). Here is an
example with verbosity level = 1.

STATISTICS OVER THE COMPLETE RUN:

*** SYSTEM WORKLOAD STATISTICS ***

Tr.# Name Type Count %-age Total Time(s) Min Time(s) Max Time(s) Avg Time(s)
get_order Q 5062 10.12 392.37 0.00 0.56 0.08
2 get_security Q 4991 9.98 393.83 0.00 0.57 0.08
3 customer_profile Q 5107 10.21 400.38 0.00 0.56 0.08
4 search_securities Q 4934 9.87 387.38 0.00 0.59 0.08
5 account_summary Q 4928 9.86 379.52 0.00 0.59 0.08
6 get_security_price Q 4913 9.83 385.20 0.00 0.59 0.08
7 customer_max_order Q 5082 10.16 278.39 0.00 0.53 0.05
8 updcustacc U 1517 3.03 84.82 0.00 0.31 0.06
9 updsecurity U 1479 2.96 85.84 0.00 0.28 0.06
10 delcustacc D 983 1.97 55.73 0.00 0.29 0.06
11 delorder D 5045 10.09 271.21 0.00 0.27 0.05
12 insNoValidcustacc | 1018 2.04 97.33 0.03 0.59 0.10
13 insNoValidorder | 4941 9.88 401.55 0.00 0.62 0.08

*** SYSTEM THROUGHPUT ***
The throughput is 60000 transactions per minute (10 00.00 per second).

When —pd <# seconds> option is used (i.e., stats print delay is specified), then the system
workload statistics are displayed as often, as specified by the “pd” argument. At each interval, you
see the interval number, its timestamp and what happened during that interval. At the end of the
run, the final table showing statistics for the whole run is produced. The transaction type is
indicated as Query, Update, Delete, Insert, or Multi-statement.

Having the stats printed periodically allows you to see how the metrics are changing during the
run. For example, this is useful for plotting throughput graphs. Another advantage is that if the
program terminates abnormally, you can see the performance metrics prior to the termination.

If the ramp-up period is specified using the —r <#seconds> option, the output is displayed in the
same way (with the notification when the ramp-up took place), but at the end two final tables are

TPoX Benchmark: Workload Driver Overview and Usage 17

produced rather than one. The first table shows all the statistics as if there was no ramp-up time
(i.e., for the whole run). The second table shows results only for the period after the ramp-up.
Comparing these two tables tells you whether the ramp up was really necessary for the system to
reach a steady state.

When percentile and/or confidence intervals are computed, one new column is displayed for
each.

Tr. # Name ... Avg Time (s) 95% Percentile 95.0% Conf. Interval
1 account_summary_sglxml ... 0.03 0. 07 [0.03 - 0.24]
2 customer_profile_sqglxml ... 0.02 0. 05 [0.01 - 0.17]

In this example, the 95" percentile and a confidence interval with confidence level of 95% were
computed for each transaction. When using ram-up period, percentile and/or confidence interval
are computed for the after ramp-up period and for the overall period, just like all the other
reported values.

The supported value for the percentile computation range from 1 to 99, while for confidence
intervals the set of values supported for the confidence level are: 70, 75, 80, 85, 90, 95, 97, 98, 99,
99.9, 99.99, 99.999 and 99.9999.

Please note that in the table above several columns were removed in order for each row to fit in
one line. All the columns displayed in the previous example (Type, %-age, Total Time(s), Min
Time(s) and Max Time(s)) are also printed when using —pc and/or —cl options.

2) stats_per_user.txt

This file is produced only if verbosity level is 1 or greater. It contains the same performance
metrics as stats.txt , but per user (thread):

*** DETAILED STATISTICS FOR ALL USERS OVER COMPLETE RUN ***

*** User # 1 statistics ***
*** User # 2 statistics ***

A separate table showing how many transactions were complemented by each user is displayed.
The information in this file tells you whether the workload was distributed evenly among users.

If the ramp-up period is specified, stats_per_userl.txt and stats_per_user2.txt are produced.
The first one is for the whole run and the second one is for the period after the ramp-up only.

3) output.txt
This file is always produced, but its contents depend on the verbosity level. Here is an example
when the verbosity level is set to 2:

The WorkloadDriver program is running...

The following arguments are used (user id/password omitted):
-u 100 -ht myhost.ibm.com -pt 36460 -w mixed.prope rties -tr 500 -v 1
100 concurrent users/threads have been initialized and connected to the

database...

TPoX Benchmark: Workload Driver Overview and Usage 18

Longest connection time: 3 seconds

Workload execution starting date/time: Wed Sep 13 15:07:49 EDT 2006
Workload execution finishing date/time: Wed Sep 13 15:08:40 EDT 2006
Workload execution elapsed time: 50 seconds

The system and user statistics have been collected.

The output/output2006_09 13 1507 directory contains the files
output.txt and stats.txt (as well as stats_per_user xt, if the
verbosity level is 1 or 2, and userl.txt, etc., if the verbosity level
is 2).

The last custacc document inserted was data/custacc /custacc1018.xml
The last order document inserted was data/order/ord er4941.xml

The collected performance metrics are summarized when the workload execution scheduled
finishing time is reached (as specified in the -ti or —fto option). The last transaction for each user
might still be in flight, but we do not need statistics for it, since it would finish too late to be
considered. The connections are closed only after all of these running transactions have
completed.

If the program terminates abnormally (i.e., if either an error or an exception is raised), the
output.txt file also contains diagnostic information about what went wrong and which actual
values were used for the parameter markers. For example:

EXCEPTION:
The statement that caused an exception:
insert into security values (?)

Failed during inserting: dat a/ security/securityl25. xnm
Note: the insertions of the documents with the ids in the range
(<current doc id> - <number of users>, <current doc id>) might have not

been committed!

For XQueries, the statement that raised the exception is printed (in the output.txt file and on the
screen) with parameter markers replaced by the actual values.

When insert transactions are used in the workload, the output.txt file also specifies which
document was the last one inserted into each of the three tables. This info is useful in case you
want to specify different documents for the next benchmark run (to avoid duplicates).

4) userl.txt — userN.txt

These files are produced, if verbosity level is 2 (to get detailed information for each of N users).
userX.txt contains all transactions executed by user X (with parameter markers replaced by
actual values) and the output of these transactions. Example of a file user3.txt:

*¥** TRANSACTION # 5 ***
Transaction starting time: Mon Sep 19 16:03:45 EST 2005
Statement:

XQUERY declare default element namespace

"http://www.fixprotocol.org/FIXML-4-4"; declare nam espace
s="http://tpox-benchmark.com/security”; let $stock stemp := for $temp

TPoX Benchmark: Workload Driver Overview and Usage 19

in db2-fn:xmlcolumn("SECURITY.SDOC")/s:Security whe re
$temp/@id>="10783" and $temp/@id<10790 return $temp for $temp2 in
$stockstemp let $n := $temp2/s:Symbol return <Stock xmins="http://tpox-
benchmark.com"> {$n} <Orders> {for $o in db2-
fn:xmlcolumn("ORDER.ODOC")/FIXML[Order/Instrmt/@Sym = $temp2/s:Symbol]
return sum($o/Order/OrdQty/@Qty) </Orders> </Stock >

Result(s):

1

<Stock xmlns="http://tpox-benchmark.com"><Symbol
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instanc e"
xmins:security="http://tpox-benchmark.com/security" xmins="http://tpox-
benchmark.com/security">BCIIPRC</Symbol><Orders/></ Stock>

<Stock xmlns="http://tpox-benchmark.com"><Symbol
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instanc e"
xmins:security="http://tpox-benchmark.com/security" xmins="http://tpox-
benchmark.com/security">BNSO</Symbol><Orders/></Sto ck>

Returned rows = 1

Transaction ending time: Mon Sep 13 16:04:41 EST 20 06

*** TRANSACTION # 1 ***

In case of xqueries, the TPoX-specific parameter markers (|1, |2, ...) are replaced by the actual
values before the statements/results are printed in the user output files. In case of other
statements, the ‘?’-denoted parameter markers are not replaced, but the actual valued used for
them are displayed in a tabular format.

If verbosity level 0 or 1 is used, although the query results of the statements are not printed in the
files, they are still fetched from the database server into java host variables to ensure that the
performance measurements are meaningful. Verbosity level 2 is for debugging purposes (to see
that the statements return correct output). Verbosity level 0 or 1 should be used for actual
measurement runs because then no extra time is spent on writing data to files.

In the case of query transactions, a summary line is printed at the end of the result set displaying
how many rows were returned by the query. This information could be easily processed by using
the filtering commands (e.g.: grep and find).

Sometimes (when —ti or —fto option is used), the following lines are the last ones in the userX.txt
file, where X is one of the users:

THIS TRANSACTION COMPLETED AFTER THE SCHEDULED FINISHING TIME FOR THE
WORKLOAD EXECUTION! THEREFORE, THE INFORMATION ABOUIT IS NOT USED IN
THE STATISTICS COLLECTED.

Transaction ending time: Mon Sep 13 16:05:24 EST 20 06

The program waits for the last transaction of each user to complete and only then closes the user
files.

TPoX Benchmark: Workload Driver Overview and Usage 20

5) comment.txt
If the “—c <comment>" option is specified in the WorkloadDriver command line, this output file will
contain the <comment> text.

6) other output
There is a WorkloadDriver/xml directory created with the output of each run in an xml format.
This directory contains files with names such as tpox2006_09 13 1507.xml .

Additionally, there is a jecOutput.txt file that is located in the WorkloadDriver directory. This file
is produced when the verbosity level is equal to 2. It contains debugging information produced by
the java database connector. This file needs to be manually removed from time to time for it not
to grow too large.

