
An XML Transaction Processing Benchmark

Matthias Nicola
IBM Silicon Valley Lab

555 Bailey Avenue
San Jose, CA, USA

mnicola@us.ibm.com

Irina Kogan
IBM Toronto Lab

8200 Warden Avenue
Markham, ON, Canada

ikogan@ca.ibm.com

Berni Schiefer
IBM Toronto Lab

8200 Warden Avenue
Markham, ON, Canada

schiefer@ca.ibm.com

ABSTRACT
XML database functionality has been emerging in “XML-only”
databases as well as in the major relational database products. Yet,
there is no industry standard XML database benchmark to evalu-
ate alternative implementations. The research community has
proposed several benchmarks which are all useful in their respec-
tive scope, such as evaluating XQuery processors. However, they
do not aim to evaluate a database system in its entirety and do not
represent all relevant characteristics of a real-world XML applica-
tion. Often they only define read-only single-user tests on a single
XML document. We have developed an application-oriented and
domain-specific benchmark called "Transaction Processing over
XML" (TPoX). It exercises all aspects of XML databases, includ-
ing storage, indexing, logging, transaction processing, and concur-
rency control. Based on our analysis of real XML applications,
TPoX simulates a financial multi-user workload with XML data
conforming to the FIXML standard. In this paper we describe
TPoX and present early performance results. We also make its
implementation publicly available.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems–transaction processing.

General Terms
Measurement, Performance, Design. Experimentation

Keywords
XML, Database, Benchmark, XQuery, SQL/XML, TPoX

1 INTRODUCTION
Comprehensive and efficient support for XML data management
is an increasingly important requirement for database systems.
This includes storage, manipulation, search and retrieval of XML
data while guaranteeing transactional consistency, recoverability,
high availability, performance and usability. All major relational
database systems offer some form of XML support [18][21][22]
and there is also a variety of XML-only databases such as
Tamino, X-Hive, Ipedo, Xyleme, Neocore, and others [6]. Addi-
tionally, there are open-source and research implementations of

XML databases and XQuery processors, including Galax,
MonetDB, eXist, Saxon and Timber [6][15]. However, an indus-
try standard XML database benchmark to compare different sys-
tems is missing. Neither the Transaction Processing Council
(TPC, tpc.org) nor the Standard Performance Evaluation Corpora-
tion (SPEC, spec.org) have announced plans to develop and stan-
dardize an XML database benchmark.

At the same time there is increasing demand for and adoption of
XML database technology in commercial enterprises in virtually
every industry sector, including finance and banking, insurance,
government, retail, health care, and manufacturing. For many IT
decision makers this raises the question of how to compare XML
databases. Performance is always among the most critical criteria,
and, therefore, an XML database benchmark is required.

In addition to feature-specific micro-benchmarks that focus on
core XML processing operations, application-level workloads are
important to assess the performance of an entire system as a
whole. The research community has proposed various XQuery
and XML database benchmarks, e.g. XMach-1 [4], XMark
[24][25], XPathMark [9], XOO7 [7], XBench [30], MBench [23],
and MemBeR [3][16]. Some are predominantly application-
oriented, such as XMach-1 and XBench, while others are de-
signed as abstract micro-benchmarks, e.g. MBench and MemBeR.
XMark, XPathMark and X007 can be viewed as a blend because
their data and queries represent a fictitious application scenario
but they also try to exercise all relevant aspects of the XQuery and
XPath languages. Further analysis and comparison of the bench-
marks can be found in [1][5][17]. Additionally, [15] describes the
execution and results of five of the benchmarks on six open-
source XQuery processors/databases.

Except for XMach-1, all of these benchmarks focus predomi-
nantly on XQuery processing rather than on evaluating a complete
database system. Indeed, most of the benchmarks define queries
only, despite real-world requirements for insert, update and delete
operations. Many of them are also designed as single-user tests on
a single large XML document. Such tests can be very valuable to
investigate design alternatives and optimizations in an XQuery
processing engine. However, these benchmarks are not sufficient
to stress all performance-relevant components of a full-fledged
XML database system and concurrent user activity.

XMach-1 distinguishes itself from the other benchmarks since it
defines a read/write multi-user workload over many small XML
documents. It also includes a basic form of XML document vari-
ability. With these characteristics, XMach-1 pursued some of the
same goals as TPoX. However, there are several significant dif-
ferences between TPoX and XMach-1, which we discuss in Sec-
tion 2.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006...$5.00.

We find that none of the existing benchmarks matches our goal to
comprehensively represent a realistic application scenario. We
carefully looked at real-world XML applications, including and
beyond those characterized in [19], and devised a list of require-
ments for an application-oriented XML database benchmark. Sub-
sequently we designed and implemented TPoX as an attempt to
meet these requirements. We are making TPoX available as open
source at http://tpox.sourceforge.net/ [27] and invite any inter-
ested groups to use it and to provide feedback or contributions to
extend and improve the benchmark.

Based on our analysis of XML applications, we describe a set of
benchmark requirements in Section 2 and compare them to the
existing benchmarks. Section 3 describes the design and imple-
mentation of TPoX as an attempt to meet these requirements.
Section 4 presents early results of TPoX on a commercial data-
base system. Section 5 concludes with future directions.

2 XML BENCHMARK REQUIREMENTS
In this section we discuss our XML database benchmark require-
ments relative to the existing benchmarks. We do realize that
some of the benchmarks were never intended to meet many of
these requirements or were restricted by the available language
standards and implementations at their time of definition. The
following paragraphs in this section describe each of our criteria
and its importance to a benchmark definition. This discussion is
summarized in Table 1.

Data- vs. document oriented. XML applications can roughly be
classified as predominantly data-oriented or predominantly docu-
ment-oriented. For example, order or sales processing is typically
data-oriented while the management of contracts, emails or news
articles is document-oriented. In hybrid applications with charac-
teristics of both, one of the two areas often determines overall
performance more than the other. Data- and document-centric
XML applications often differ significantly in the size and struc-
ture of their XML documents and their prevalent operations. For

example, document-centric applications often handle larger docu-
ments or use full-text search operations much more than data-
centric applications. Thus, we believe that two separate XML
benchmarks are required, just as there are separate benchmarks for
OLTP (TPC-C) and Decision Support (TPC-H/R) for relational
databases. TPoX models a data-centric scenario while XMach-1 is
predominantly document-centric.

Very large number of small documents. We see that many data-
centric XML applications deal with millions to billions of rela-
tively small XML documents, i.e. less than 100KB, often even
less than 20KB [10][11][19]. Only XBench and XMach-1 define
multi-document tests, over 2.5M and 10M documents, respec-
tively, but they only touch the low end of what we think is the
required scale. TPoX is designed to scale from millions to billions
of XML documents.

Document and schema variability. XML is often used for its
flexibility, i.e. to make applications more resilient to diversity and
change in message formats, business forms, and other types of
documents. This is a critical property to capture in a benchmark,
which so far has only been addressed by XMach-1. XMach-1 uses
many different DTDs with 2 – 100 instance documents per DTD.
The DTDs differ only in an integer number that is appended to
most element names. Although this is a simple yet effective ap-
proach, we find it difficult to match this approach to data diversity
in real XML applications. In TPoX we address data variability
through the use of a complex real-world XML Schema (FIXML,
Financial Information eXchange Markup Language). FIXML
defines thousands of optional elements and attributes but only a
very small subset appears in any given instance document. Addi-
tionally, we are investigating how to introduce "unpredictable"
XML Schema changes into a benchmark implementation.

Multi-user tests are imperative. System under test (SUT) is the
database. No real-world XML database application serves a sin-
gle user. XMach-1 includes multi-user tests, but defines the SUT
to consist of database server plus application server. This is an

Table 1: Comparison of XML Benchmarks (extended from [5])
 XMach-1 XMark XPathMark XBench XOO7 MBench MemBeR TPoX
Main data focus doc-centric data-centric data-centric doc & data data-centric data-centric data-centric data-centric

Evaluation scope DBMS + AS query
processor

XPath
processor entire DBMS query processor micro, query

processor
micro, query

processor entire DBMS

user single/multi single single single single single single single/multi
server ≥ 1 1 1 1 1 1 1 ≥ 1
documents used 10k – 10M 1 1 of 2 1 - 2.5M 1 1 1 of 3 3M – 360B
Document sizes 2 – 100KB 10MB – 10GB 10MB – 10GB 1KB – 10GB 4MB – 1GB 50MB – 50GB 11MB 2 – 25 KB
DB size 156MB – 152GB 10MB – 10GB 10MB – 10GB 10MB – 10GB 4MB – 1GB 50MB – 50GB 11MB 10GB – 1PB
schemas/DTDs #DTDs = #docs/20 1 2 1 1 9 3 3 (43 XSD files)
element types 4*#DTDs +7 74 74+ ~200 9 2 19 ~3600
Metric throughput response time response time response time response time response time response time throughput, resp.time
Schema validation optional no no no no no no yes
Namespaces no no yes no no no no yes
queries 8 20 57 67 23 49 17 7+
value updates 1 0 0 0 0 0 0 2
structural updates 0 0 0 0 0 5 0 4
doc deletes 1 0 0 0 0 0 0 2
doc inserts 1 0 0 0 0 1 0 2
joins across 2+
document types 0 0 0 1 0 0 0 3+

Data diversity yes (tag names) no no no no no no yes
Schema evolution no no no no no no no no

important scenario to cover, but the application server impacts
overall system performance significantly, which makes an isolated
assessment of database performance very difficult. In particular,
XMach-1 allows queries to be processed by application code in
the application server. With today’s XML database technology
supporting XQuery and SQL/XML processing, this is no longer
needed.

Read/Write workload. A read-only workload (XMark, X007,
XBench, XPathMark, MemBeR) ignores critical aspects of XML
data management, such as concurrency control, logging, and in-
dex maintenance. Without writes, an unrealistic number of in-
dexes and materialized views can be defined to optimize query
performance without any associated cost or performance penalty.
In fact, we have seen such questionable use of a read-only XML
benchmark in a commercial setting.

XMach-1 includes full document insert and delete operations as
well as value updates that modify attribute values but do not
change a document’s structure. These inserts/updates/deletes con-
stitute only 2% of the XMach-1 workload mix, which we consider
too low to stress all database system components. We observe that
financial transaction processing databases often have 10% to 50%
writes in their workload, especially if many reads are satisfied by
application layer caches. TPoX defines a mixed workload of 30%
writes and 70% reads.

XMach-1 also allows queries to see stale data since committed
updates are allowed to take up to 30 seconds before they have to
be reflected in query results. This can be reasonable for some web
applications but is not acceptable for the financial scenario in
TPoX or most any of the financial XML applications we have
analyzed. Unlike XMach-1, MBench includes structural updates
but is a micro-benchmark with a single very artificial XML docu-
ment.

Multiple document types and joins. We see that an increasing
number of XML applications use more than one document type as
well as joins to combine them. Only XBench includes such a join
(and only one).

Namespaces. We require the use of multiple namespaces in XML
Schemas, instance data, and queries. This is common in real-
world applications. Storage, indexing and query processing of
namespaces can be subject to performance optimization and must
not be ignored. Except XPathMark, none of the existing bench-
marks uses namespaces.

Schema validation is required in many (but not all) XML applica-
tions and can significantly affect performance. It also produces
type annotations for XML nodes which can impact XQuery proc-
essing performance. The existing benchmarks allow schema vali-
dation, but none of them requires it as a mandatory operation.

In the next section we describe how TPoX tries to address these
requirements.

3 THE TPoX BENCHMARK
In [12], Gray states that database benchmarks should be domain-
specific and relevant to a certain type of application, portable
across platforms, scalable and simple. Portability, simplicity, and
scalability are technical requirements that need proper attention
during benchmark design and implementation. Relevance to a
specific application domain is equally important and is the starting
point for our TPoX design.

3.1 The TPoX Application Domain
Businesses in every industry are embracing XML for vertical
applications. We see a particularly high XML adoption rate in the
financial industry. The world’s leading financial companies have
developed more than a dozen XML vocabularies to standardize
their industry’s data processing [28]. FpML, FIXML, SwiftML,
IFX, MISMO, OFX, and XBRL are among the most popular.
FIXML 4.4 is an industry-standard XML Schema for trade-related
messages such as trade capture reports, buy/sell orders, and many
others [10]. The FIX (Financial Information eXchange) protocol
is used by more than 150 leading financial companies worldwide.
The XML version, FIXML, has been developed to improve exten-
sibility, application layer independence, message validation, and
robustness. FIXML also enables straight-through processing,
which reduces operating costs and improves the quality and time-
liness of information [8]. Many of the major U.S. exchanges and
clearinghouses are starting to roll out FIXML projects, e.g. at the
Chicago Mercantile Exchange [8] and the Options Clearing Cor-
poration [20], which is one of the world’s largest equity clearing
firms.

The FIXML Schema 4.4 consists of 41 schema documents [10]. It
contains more than 1300 type definitions and more than 3600
elements and attributes. The vast majority of those are optional
and only a small subset of them are present in any given instance
document. Typical FIXML applications perform message-based
transaction processing involving large numbers of small XML
documents. All these characteristics are very similar to many
other financial applications and their XML Schemas, such as OFX
and FpML. The OFX (Open Financial Exchange) schema consists
of 59 XSD files, ~2500 elements and ~800 type definitions. The
FpML (Financial products Markup Language) has 21 XSD files,
1730 elements and attributes, and 600 type definitions. Like
FIXML, OFX and FpML are adopted by major financial institu-
tions world-wide [11].

Supporting financial companies in their adoption of XML has
helped us understand their data and processing characteristics. For
example, we have worked with multiple brokerage and securities
processing companies on storing and querying FpML, FIXML
and other financial data in XML format. We decided to design a
benchmark that is relevant to this application domain and reflects
the data and query patterns that we have seen. Our benchmark
simulates an online trading scenario and uses FIXML to model
some of its data.

TPoX is purposefully simplified, yet still representative in terms
of documents, transactions, and usage of XML Schemas. Another
important aspect of TPoX is the flexibility and extensibility of its
implementation. The data distributions, transactions, workload
composition, data and multi-user scaling, commit frequencies,
think times, etc. are all controlled by configuration parameters. To
propose a reference workload, we have chosen specific parameter

values in this first version of TPoX. However, any parameter can
be changed anytime, which makes TPoX a versatile performance
test harness for XML databases [27].

3.2 TPoX Data and XML Schemas
Figure 1 shows TPoX’s main logical data entities. Customers have
one or more accounts. For each account, one or more orders are
executed. Each order buys or sells shares of exactly one security.
A security is a stock, bond or mutual fund. Each account contains
one or more holdings. A holding, also called position, is a certain
number of shares of a particular security in an account. Each secu-
rity typically has many orders and holdings across the customers’
accounts.

Figure 1: TPoX Entities and XML Schemas

TPoX’s data entities are represented by three XML schemas. Or-
ders are represented using the FIXML 4.4 schema. Then there is
one XML document per customer that includes personal data and
information about all of his accounts and holdings, i.e. account
and holding data are inlined with the customer data (“CustAcc”).
This is an intentional design choice to reward technological pro-
gress for updates and concurrency control on a sub-document
level.

A fixed number of 20833 security documents represents the vast
majority of US-traded stocks, bonds and funds with real ticker
symbols, real fund families, etc. Security documents range from
3KB to 10KB because stock and fund descriptions have relatively
large text values of variable size. This allows for some text opera-
tions despite the data-centric focus of TPoX. CustAcc documents
are between 4KB and 20KB in size. Orders are 1KB to 2KB and
characterized by many attributes and a high ratio of nodes to data.
All TPoX documents contain namespaces.

The three document collections are interrelated, e.g. Order docu-
ments contain security symbols and account numbers that exist in
the Security and the CustAcc documents, respectively. We use the
Toxgene data generator [26] to produce instance documents for all
three schemas. We developed code to partition and parallelize the
data generation in a configurable number of concurrent Toxgene
sessions. This improves the performance and scalability of the
data generation while preserving referential consistency across all
generated documents. The generated documents are spread over a
configurable number of directories to avoid deterioration of file
system performance when millions of files are placed into a single
directory.

The TPoX data generation is defined in Toxgene templates and
characterized by various uniform and non-uniform distributions.
They control element occurrences, appearance of optional ele-

ments and attributes, as well as data values within and across
documents. For example, the number of accounts per customer is
drawn from a normal distribution with min=1, max=7, mean=1,
and variance=2, expressing that customers with one or two ac-
counts are a lot more common than customers with many ac-
counts. Similar concepts of “data skew” are applied to the number
of occurrences of phone numbers, middle names, holdings and
other variable data items. A customer’s PIN, password and either
social security number or taxpayer ID are stored encrypted as
Base64Binary type values. All Security documents contain a
name, symbol, price, etc. Additional sub-trees do or do not occur
depending on the type of the Security, e.g. element "FundInforma-
tion" vs. "StockInformation". For more details on the XML Sche-
mas and data generation, see [27].

Table 2: TPoX Scaling
 Scale Total #documents ~Raw size Min. #users

XS 1 3,620,833 10GB 10

S 10 36,020,833 100GB 100

M 102 360,020,833 1TB 1,000

L 103 3,600,020,833 10TB 10,000

XL 104 36,000,020,833 100TB 100,000

XXL 105 360,000,020,833 1PB 1,000,000

In TPoX, the database can be scaled from extra small (XS) to
extra-extra large (XXL) by increasing the number of Order and
CustAcc documents (Table 2). We use an average of five orders
per customer, e.g. 3,000,000 Order and 600,000 CustAcc docu-
ments at scale factor XS. Smaller or intermediate scale factor are
possible, e.g. for functional testing. Multi-user tests simulate at
least as many concurrent users as Gigabytes of raw data used.

The proposed scaling of the TPoX database goes far beyond the
size of the existing XML benchmarks to match the expected fu-
ture growth of real XML applications. We scale the TPoX data-
base in steps (like TPC-H) rather than with a continuous function
(like TPC-C). Since competitive XML database technology can be
quite different for small vs. large databases, it may not be mean-
ingful to use a continuous scaling function to compare systems
that are intended for different size databases.

3.3 TPoX Transactions and Workload
The TPoX benchmark is executed in two stages. Stage 1 performs
concurrent inserts to populate the database and maintain all de-
sired indexes at the same time. There is no separate stage for
building indexes. The number of documents and required degree
of concurrency (“number of users”) is defined in Table 2. Stage 2
performs a multi-user read/write workload on the populated data-
base, with 70% queries and 30% write operations (inserts, updates
and deletes combined). Both stages are executed by the workload
driver described in Section 3.4. Optionally, an additional read-
only stage can be executed (100% queries) in which all queries
have equal weight.

The mixed workload consists of 17 transactions. Each performs
one or more of the following operations: insert, delete, structural
update, value update or query. Queries are expressed in XQuery
and can be executed as-is or embedded in SQL, e.g. through the
use of SQL/XML functions, such as XMLQUERY and
XMLEXISTS. The number of queries in TPoX is lower than in

1

n

n
n

nn 11

1

1

1Customer Holding Account

Order Security

CustAcc.xsd
FIXML

(41 XSD files) Security.xsd

many of the existing benchmarks because it is not our goal to
exercise every feature of the XQuery language. This is better done
by micro-benchmarks. Instead, the objective of TPoX is to distil
the most performance-relevant aspects of a real application sce-
nario into a concise workload. For comparison, the TPC-C
benchmark is highly relevant with only five different transactions.

Table 3 describes the business meaning of the TPoX transactions
and their relative weight in the workload. The exact query and
update statements are provided in the Appendix. Table 4 maps the
transactions to database operations. Additional candidate queries
for the TPoX scenario are offered in [27], including 3-way joins.

Table 3: Business Descriptions of TPoX Transactions
I1 Customer places a new order (insert order document) 7%
I2 Add a new customer (insert CustAcc document) 1%
D1 An order is cancelled or archived (delete order doc) 7%
D2 Remove a customer (delete CustAcc document) 1%
U1 Close an existing customer’s account 1%
U2 Open a new account for an existing customer 1%
U3 Update the price of a security 3%
U4 Update the status of an order 3%
U5 Execute a “buy” order of a given security & account:

1. If shares already exist, increase the quantity;
otherwise, add a new holding

2. Replace account balances and values dates
3. Abort if the max. number of holdings is exceeded

3%

U6 Execute a “sell” order (opposite of U5) 3%
Q1 Retrieve an order for a given order id 10%
Q2 Retrieve a security for a given ticker symbol 10%
Q3 Get a customer’s personal data, construct profile doc. 10%
Q4 Search securities based on 4 predicates and return

specific elements of interest
10%

Q5 Construct an account summary and statement 10%

Q6 Retrieve the price of a certain security 10%

Q7 Get a customer’s most expensive order 10%

Table 4: Mapping of Transactions to XML Operations

XML Database Operation TPoX Transactions
Full document insert/delete I1, I2 / D1, D2
Full document retrieval Q2
Element/attribute value update U3, U4, U5, U6
Subtree insert U2, U5
Subtree delete U1, U6
Subtree replace U5, U6
Element construction Q3, Q4, Q5, Q6, U2, U5, U6
Predicate evaluation Q1-Q7, U1-U6, D1, D2
*, // processing Q4
Join across document types Q7, U5, U6
Aggregation Q7
Arithmetic on XML values Q7, U5, U6
Schema validation required I2, U2, U4

3.4 TPoX Performance Metrics
The primary performance metric of the benchmark is TTPS
(TPoX Transactions Per Second) which is the throughput of the
multi-user read/write workload (stage 2) at a given scale factor.
Additionally we recommend that two secondary metrics, TIPS
and TQPS, are reported for the same scale factor. TIPS is the

throughput of the insert workload (stage 1), TQPS is the through-
put of the optional read-only workload. TTPS, TIPS and TQPS
must be the throughput as reported by the TPoX workload driver
for the respective part of the benchmark. The steady-state meas-
urement interval should be at least 1 hour.

Table 5: TPoX Performance Metrics
Primary metric: TTPS (TPoX Transactions Per Second)
Secondary metrics: TIPS (TPoX Inserts Per Second)
 TQPS (TPoX Queries Per Second)

The system under test (SUT) includes the database system, the
operating system, the workload driver, and the hardware of the
database server including storage and all auxiliary components. If
the workload driver runs on a separate client machine instead of
the server then the client and the network are also part of the SUT.

It is not permitted to change the configuration or any tuning pa-
rameters of any part of the SUT between the stages of the bench-
mark. Another requirement is that insert, update and delete opera-
tions are immediately reflected in subsequent query results.

3.5 The TPoX Workload Driver
The TPoX workload driver is used for all stages of the benchmark
execution. This driver is a lightweight Java application that
spawns 1 to n concurrent threads. Each thread simulates a user
that connects via JDBC to the database and submits a stream of
transactions without think times. Each stream is a weighted ran-
dom sequence of transactions picked from Table 3. Each transac-
tion is assigned a weight that determines the transaction’s per-
centage in the workload mix.

At run time, the workload driver replaces parameter markers in
the transactions with concrete values drawn from configurable
random distributions or lists of input values. In the transactions,
parameter markers can be denoted by question marks, as would be
typical for SQL and SQL/XML statements. Alternatively, the
workload driver can also detect and use numbered parameter
markers denoted by a vertical bar (pipe), i.e. |1, |2, |3 etc.. See [27]
for further details.

For example, order IDs for Q1, U4 and D1 are drawn randomly
from the total range of order IDs in the database population, in-
cluding new orders from I1. The transactions, their weights and
the eligible input for each parameter marker is described in a
workload description file which is input to the workload driver.

Figure 2 shows a sample workload description file for a workload
consisting of Q1 (75%) and Q2 (25%). The two queries are stored
in files get_order.xqr and get_security.xqr, and have only
one parameter marker each. Q1 uses order ids that are uniformly
distributed between 103282 and 15103281. Q2 looks for securi-
ties based on ticker symbols chosen randomly from the specified
input file. Multiple parameters per transaction are also supported.

numOfTransactions = 2

t1 = queries/get_order.xqr
p1|1 = uniform | 103282 - 15103281

t2 = queries/get_security.xqr
p2|1 = file | input/security_symbols.txt

w1 = 75
w2 = 25

Figure 2: Sample Workload Description File

Parameter markers in insert statements are fed from pre-generated
documents that reside in a pool of directories. This pool of input
documents is shared by all concurrent user threads under a syn-
chronized document counter. During the mixed read/write work-
load (stage 2), the workload driver also uses this counter to dy-
namically increase the range of documents eligible for subsequent
update and delete operations.

In our tests we found that neither the synchronization nor the I/O
to input files had a significant impact on the workload perform-
ance if adequate I/O bandwidth is provided. The CPU consump-
tion of the workload driver is sufficiently low so that it can run on
the same machine as the database system under test. It can also
run on a separate client machine if desired.

Figure 3 shows the command line options of the workload driver.
The only required parameter is -w to provide a workload descrip-
tion. All other parameters are optional or use reasonable default
values if not specified [27]. The execution can be limited either by
total run time (-ti) or by the number of transactions that each con-
current user executes (-tr). The former is used for the mixed
read/write workload in stage 2, the latter for stage 1 where a spe-
cific number of insert transactions is required to correctly popu-
late the database.

usage: WorkloadDriver [-h] [-v level] [-dbs DBMS] [-d
database] [-id dbuser] [-pw passwd] [-ht host] [-pt port]
[-pd sec] [-pc n] [-cl level] [-m MB] [-s seed] [-ti sec]
[-r sec] [-tr #txns] [-fto seconds] [-tt milliseconds]
[-cc #txns] [-u #users] [-w filename]

 -h help
 -v <level> verbosity (2=highest, 0=lowest)
 -dbs <db system> database system (eg. DB2)
 -d <database> database name
 -id <user id> database user id
 -pw <password> database password
 -ht <host> host where DB resides
 -pt <port> database port
 -pd <#seconds> stats print delay
 -pc <n> compute the n-th percentiles
 -cl <conf. level> compute confidence intervals
 -m <MB> memory for –pc and -cl computations
 -s <seed> seed to produce random numbers
 -ti <seconds> benchmark test duration
 -r <seconds> ramp-up time in seconds
 -tr <#transactions> limits #txns executed per user
 -fto <seconds> forced time out when -tr is used
 -tt <milliseconds> think time (in ms) for each user
 -cc <#transactions> commit count (default: 1)
 -u <#users> number of concurrent threads/users
 -w <file name> workload description file

Figure 3: Workload Driver Options

For stage 2, a ramp-up period can be specified (-r) that precedes
the measurement interval to reach a steady state of transaction
throughput. The workload driver reports the average, minimum
and maximum response time for each transaction type as well as
the throughput in transactions per minute. The response time in-
cludes the time to fetch all query results from the database. For
each transaction time percentiles and confidence intervals can be
computed for their response times, using –pc and –cl respectively.
Depending on the verbosity level (-v), the driver can also report
the response times, throughput and number of completed transac-
tions separately for each concurrent user. Query result sets (or
sequences) can be written to files, if desired.

During a benchmark run, the performance numbers can be emitted
every n seconds (-pd) to allow analysis of performance behaviour
over time. For example, this helps determining whether insert

performance is constant as the tables grow (stage 1), or how long
of a ramp-up time is needed to reach a steady-state (stage 2).

3.6 TPoX Extensibility
The TPoX benchmark was designed for multi-user execution of a
mixed read/write workload. However, the TPoX implementation
also allows query-only, write-only and single-user tests simply by
changing the input to the workload driver. In its simplest form of
operation, the workload driver can read a directory with queries
(one text file per query) and execute each of them a given number
of times (-tr) against a database. For example, it is trivial to use
our workload driver to run the XMark benchmark [24] in single-
as well as multi-user mode.

The TPoX workload we have defined uses no think time between
transactions and commits immediately after every transaction.
Nevertheless, for testing purposes a think time (-tt) or less fre-
quent commits (-cc) can be specified. Each transaction in our
workload consists of a single statement or query expression. Yet
the workload driver is also capable of executing multi-statement
transactions. Although the workload driver was designed for
TPoX, it can run any SQL or XQuery workload against a data-
base. We have deployed it successfully on several versions of
Linux and Windows as well as on AIX.

We have used the workload driver extensively on DB2 9 [18], but
it can be run with minimal changes (if any) against any database
that supports JDBC (-dbs). In fact, a university that has tested an
early version of TPoX has successfully used it on a database other
than DB2. Due to the modular design, the majority of the work-
load driver logic is independent from a specific database or spe-
cific database API. Hence, it is not hard to extend the driver for
use with databases or XQuery engines that do not support JDBC.

Since the TPoX data generation is based on templates rather than
hard-coded, it is easy to change value distributions, probabilities
of element/attribute occurrences, or the ratio of orders to custom-
ers. In [27] we provide detailed documentation for the data gen-
eration and the workload driver, including source code, to allow
easy adoption and modifications of TPoX.

4 EARLY TPoX RESULTS
In this section we discuss a select subset of early results and ex-
periences with TPoX for different scale factors and different OS
and hardware configurations. The first one is a 100GB TPoX that
we ran on AIX [14]. The second is a 50GB TPoX test that Intel®
conducted on Linux to exercise their dual-core Intel® Xeon®
7100 Series processors [13]. In both benchmarks the database
system was DB2 9.

DB2 9 provides pureXML™ technology, which means that XML
data is stored and processed as type-annotated trees [18]. To query
XML data, DB2 supports SQL/XML and XQuery through a single
hybrid query compiler and processing engine. Additionally, path-
specific XML indexes can be defined on attributes or elements to
speed up predicate evaluation and joins. The usage of XML
Schemas is optional in DB2. For maximum flexibility, different
XML documents in the same XML column can be associated with
different schemas, if desired.

For the 100GB tests (scale factor "S"), we used a medium size
IBM System p5 560Q server with eight 1.5GHz CPUs and 32GB
of memory. The operating system was AIX 5L v5.3 TL04. The

storage subsystem was an IBM TotalStorage DS8100, attached to
the server with 4 fiber channels. On the DS8100 we used a total of
64 disks, each 73 GB and 15000 RPM, for the raw input data,
DB2 tables and indexes, transaction log, and database backups.

The XML data was generated and stored in an AIX enhanced
journaled file system (JFS2). The default block size in a JFS2 file
system is 4096 bytes. This leads to internal fragmentation and
waste of storage space when 30 million Order files between 1KB
and 2KB are stored. Hence, we recreated the JFS2 file system
with a bock size of 512 bytes. During the population of the data-
base tables (Stage 1), each input file is read exactly once and
never again. This means that file system caching has no benefit
and is pure overhead. Hence, we mounted this file system with the
-o cio option to enable concurrent I/O and prevent caching.

We configured DB2 to use a 16KB page size for all tables and
indexes, and we created three simple tables with a single XML
column each:

create table custacc (cadoc XML)
create table order (odoc XML)
create table security (sdoc XML)

Subsequently, we defined 24 indexes on these empty tables; ten
on custacc, five on order, and nine on security. The index
definitions are provided in [27]. Before populating the database,
we increased the database buffer pool to half the physical memory
(16GB), which is common practice. Then we enabled DB2’s self-
tuning memory manager to allow autonomous and dynamic resiz-
ing of the buffer pool, package cache, lock list and other memory
areas based on the workload characteristics. No configuration
changes whatsoever were made between stage 1 and the subse-
quent query and mixed workloads.

The performance results of the concurrent inserts in stage 1 are
summarized in Table 6. Due to the low and odd number of secu-
rity documents, we used only 83 concurrent users to insert them
(83 * 251 = 20,833). The CustAcc documents were inserted at an
average rate of 1550 inserts per second (TIPS). The Order docu-
ments are significantly smaller and have fewer indexes defined on
them. Hence, a much higher average insert rate of 5320 TIPS was
achieved. Both, CustAcc and Order data were inserted and in-
dexed at approximately 30GB/hour. The –pd option of the work-
load driver reports the current throughput every n seconds and
allowed us to confirm that the insert rate remained relatively sta-
ble as the order table and indexes grew from zero to 30 million
XML documents (Figure 4).

Table 6: Stage 1 - Insert Performance (AIX, 100GB)
Table Documents

inserted
TIPS Concurrent

users
custacc 6,000,000 1550 100
order 30,000,000 5320 100
security 20,833 1226 83
TOTAL 36,020,833 3770

After populating the database, we performed a series of multi-user
query tests using the seven queries with equal weights (Q1
through Q7 from Table 3). We executed this workload for 25, 50,
75, 100, 125, and 150 concurrent users, each time for 1 hour.
Figure 5 shows the query throughput (left y-axis) as well as the
CPU utilization and I/O wait in percent (right y-axis).

Stage 1: Order insert rate over time (in TIPS)

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30

TP
oX

 In
se

rt
s

P
er

 S
ec

on
d

Number of documents already inserted (in millions)

Figure 4: FIXML Order Insert Performance (AIX, 100GB)

The query throughput increased with the number of users as the
CPUs were better utilized. Eventually the throughput gradually
levelled off as CPU utilization converged towards 100%. The best
throughput was achieved with 150 users and reached 5480 TQPS
with a CPU utilization of 96%. Increasing the number of users to
175 did not produce a significantly higher throughput since the
machine’s CPU capacity was already exhausted.

Read-only Workload, XML Queries

0

1000

2000

3000

4000

5000

6000

0 25 50 75 100 125 150 175
Number of concurrent users

0

20

40

60

80

100

Queries/second
%CPU Utilization
%I/O Wait

Queries/sec %

Figure 5: TQPS - Query throughput (AIX, 100GB)

Intel’s TPoX tests with 50GB of raw data were performed on an
Intel® Xeon® MP Server with four 3.4 GHz Intel® Xeon®
7140M processors and 16GB of main memory. Disk space was
provided by two IBM® N5500 storage systems, each housing 56
hard drives. This setup was the database server for DB2 9.

Additionally, a secondary Intel® Xeon® 7000 server was config-
ured as a client machine to run the workload driver. The operating
system on both the client and server was Novell SUSE Linux
Enterprise Server 9 SP3.

The set of database tables and indexes were the same as for the
100GB tests on AIX. In addition to the 20,833 securities, 3 mil-
lion CustAcc and 15 million Order documents were inserted by
100 concurrent users in stage 1. Subsequently, the mixed work-
load (stage 2) was executed. At the time of these TPoX tests, the
updates in our mixed workload were simpler than the ones listed
in Table 3 and shown in the Appendix. Due to the lack of an
XQuery Update implementation, we only used two “dummy”
updates, one for the CustAcc and one for the Security table. Both

updates simply read a document and replaced it with itself. Also,
schema validation was not yet used at the time of these tests.

The mixed workload was scaled from 25 to 200 concurrent users.
Figure 7 shows the actual output of the workload driver for the
mixed workload with 200 users. The throughput result was
3751.90 TTPS (225115 transactions/minute) which is also the
right-most data point in Figure 6. For each transaction, the work-
load driver reports the number of executions, the min, max and
average response times and the total cumulative elapsed time
across all executions by all concurrent users. The latest version of
the driver at [27] optionally also computes percentiles and confi-
dence intervals for the response times. This feature was not avail-
able at the time we conducted the reported measurements. We
added this to the workload driver based on reviewer comments.

Mixed Workload (70% Reads/30% Writes)

1052.1

2381.3

3553.0 3652.5

1804.9

2847.1
3230.8

3751.9

0

500

1000

1500

2000

2500

3000

3500

4000

25 50 75 100 125 150 175 200
Number of Concurrent Users

TT
P

S
 ,

IO
P

S
 x

10

0

10

20

30

40

50

60

70

80

90

C
P

U
 U

til
iz

at
io

n

TTPS IOPS (x10) CPU Utilization
Figure 6: TTPS Read/write throughput (Linux, 50GB)

The performance and scalability of the read/write workload in
Figure 6 indicated good scaling with respect to CPU utilization.
Throughput and CPU utilization increased for larger number of
users but started to flatten out at around 150 users. At this point,
the I/O subsystem was near capacity performing approximately
13000 I/O operations per second (IOPS). The slight performance
increase above 150 users was a result of even better buffer pool
hit ratios.

Further details on the 50GB Linux and 100GB AIX test scenarios
can be found in [13] and [14], respectively. Additionally, the
flexibility of the TPoX framework allowed for numerous test
variations which helped us to better understand the performance

behavior of the database system and hardware configurations. For
example, the insert and mixed workloads allowed us to examine
the critical impact of XML index maintenance, logging, and free
space management on the performance of these tests. We also ran
tests with additional candidate queries [27] and obtained valuable
insights into XML join processing and XML index usage. We
emphasize that TPoX does not necessarily require a big hardware
setup. Small TPoX runs on a low-cost desktop computer have
provided us with very useful results too.

5 SUMMARY & FUTURE WORK
In this paper we described the design and implementation of the
TPoX XML Database Benchmark. TPoX is an application-
oriented benchmark which models a financial XML processing
scenario. The TPoX schemas, data and transactions are based on
our experiences with financial institutions that have implemented
or evaluated XML data management solutions. TPoX involves
XML documents conforming to the FIXML industry standard
XML Schema.

The TPoX benchmark distinguishes itself from existing XML
database benchmarks in its application domain and its focus on
multi-user read/write tests with high scalability using very large
numbers of small XML documents. To the best of our knowledge,
TPoX is also the first XML database benchmark which includes
complex updates based on the XQuery Update Facility [29].

Our contributions include the analysis of existing benchmarks,
their comparison to real-world XML applications, the design and
implementation of TPoX to fill the identified gaps, and the de-
scription of TPoX experiences and results for two scale factors on
two different platforms. Additionally we are making TPoX avail-
able as an open source project [27] and invite interested parties to
use and extend TPoX, e.g. by defining more queries and updates.

We have identified a number of desirable improvements for
TPoX. Some of them are already work in progress. For more
flexibility it would be useful to make the data generation “resum-
able”, i.e. able to continue where a previous data generation ended
while still maintaining data consistency across the “old” and the
“new” documents. Another interesting topic to pursue is efficient
data generation “on-the-fly” to avoid the pre-generation of XML
documents altogether. The workload driver currently replaces
parameter markers with values from uniform distributions of
numbers or from hard-coded input files. It would be useful to also

 *** SYSTEM WORKLOAD STATISTICS ***

 Tr.# Name Type Count %-age Total Time(s) Min Time(s) Max Time(s) Avg Time(s)
 1 get_order Q 1351493 10.01 64029.54 0.00 1.16 0.05
 2 get_security Q 1350373 10.00 7056.80 0.00 0.44 0.01
 3 customer_profile Q 1349868 9.99 39587.92 0.00 1.32 0.03
 4 search_securities Q 1350538 10.00 5558.96 0.00 0.42 0.00
 5 account_summary Q 1351407 10.01 45769.59 0.00 1.47 0.03
 6 get_security_price Q 1350714 10.00 6748.53 0.00 0.45 0.00
 7 customer_max_order Q 1349904 9.99 242146.45 0.00 2.99 0.18
 8 updcustacc U 405627 3.00 54336.42 0.00 2.71 0.13
 9 updsecurity U 405852 3.00 6232.79 0.00 1.46 0.02
 10 delcustacc D 269966 3.00 31785.72 0.00 2.58 0.12
 11 delorder D 1350009 9.99 107624.55 0.00 1.56 0.08
 12 insertcustacc I 269877 2.00 20668.00 0.01 2.98 0.08
 13 insertorder I 1351224 10.00 87656.86 0.00 14.44 0.06

 *** SYSTEM THROUGHPUT *** The throughput is 225114 transactions per minute (3751.90 per second).

Figure 7: Workload Driver Output (Stage 2, 50GB TPoX, Linux, 200 users)

support random distributions for date and timestamp values in-
stead of using long enumerated value lists.

The current XML data for TPoX contains a number of interest-
ingly skewed value distributions many of which are not yet ex-
ploited by the queries we proposed. We believe that the TPoX
data is fertile soil for many more interesting query and update
workloads. Topics to explore include heavier analytical queries,
batch jobs which are common in various financial applications,
and a full-text search workload. The later would require a varia-
tion of the data generation templates to include larger text fields in
order and/or customers documents, such as comments. Since
schema changes over time are a reality in many XML applica-
tions, we believe that it is important to include XML schema evo-
lution in a benchmark such that the database system can not pre-
dict and prepare for the changes before the start of the workload.
This requires further investigation.

REFERENCES
[1] L. Afanasiev and M. Marx: “An analysis of the current

XQuery benchmarks”, Experimental Evaluation of Data
Management Systems (EXPDB), 2006.

[2] L. Afanasiev and M. Marx: “XCheck – An Automated
XQuery Benchmark Tool”, 2005,
http://ilps.science.uva.nl/Resources/XCheck/index.html

[3] L. Afanasiev, I. Manolescu and P. Michiels: “MemBeR: A
Micro-benchmark Repository for XQuery”, XML Sympo-
sium (XSym) 2005.

[4] T. Böhme, E. Rahm: XMach-1: “A Benchmark for XML
Data Management”, Proceedings of German database con-
ference BTW2001, pp 264-273, March 2001.

[5] T. Böhme et al: “Multi-User Evaluation of XML Data Man-
agement Systems with XMach-1”, LNCS Vol. 2590, 2003.

[6] R.Bourret: “XML Database Products”,
http://www.rpbourret.com/xml/XMLDatabaseProds.htm

[7] S. Bressan, G. Dobbie, Z. Lacroix, M. L. Lee, Y. G. Li, U.
Nambiar and B. Wadhwa: “XOO7: Applying OO7 Bench-
mark to XML Query Processing Tools”, International Con-
ference on Information and Knowledge Management
(CIKM), November 2001.

[8] Chicago Mercantile Exchange: “The Business Case for
FIXML”, 2004,
http://www.cme.com/files/BusinessCaseFIXML.ppt
http://www.cme.com/clearing/cm/stan/fixml6615.html

[9] M. Franceschet: “XPathMark - An XPath benchmark for
XMark generated data”, International XML Database Sym-
posium (XSYM), pp.129-143, 2005.

[10] The Financial Information eXchange Protocol, FIXML 4.4
Schema Specification 20040109, Revision1 2006-10-06
http://www.fixprotocol.org/specifications/fix4.4fixml

[11] FpML, http://www.fpml.org/participants/

[12] J. Gray: The Benchmark Handbook. Morgan Kaufmann,
San Mateo, CA, 1993.

[13] Intel Corporation, Whitepaper: „DB2 9 pureXML Scalability
on Intel Xeon Processor MP Platforms Using IBM N Series

Storage“, http://www.intel.com/cd/ids/developer/asmo-
na/eng/dc/mobile/technologies/326328.htm, Dec 2006.

[14] I. Kogan, M. Nicola, B. Schiefer: “DB2 9 XML performance
characteristics”, Technical Report, developerWorks, June
2006. http://www-128.ibm.com/developerworks/
db2/library/techarticle/dm-0606schiefer/

[15] S. Manegold: “An Empirical Evaluation of XQuery Proces-
sors”, in Experimental Evaluation of Data Management Sys-
tems (EXPDB), 2006.

[16] I. Manolescu, C. Miachon and P. Michiels: “Towards mi-
cro-benchmarking XQuery”, Experimental Evaluation of
Data Management Systems (EXPDB), 2006.

[17] U. Nambiar, Z. Lacroix, S. Bressan, M. L. Lee, and Y. G.
Li: “XML Benchmarks put to the test”, 3rd International
Conference on Information Integration and Web-based Ap-
plications & Services (IIWAS), September, 2001.

[18] Nicola, M., Van der Linden, B.: Native XML Support in
DB2 Universal Database, International Conference on Very
Large Data Bases (VLDB), 2005.

[19] Nicola, M., John, J.: XML Parsing: A Threat to Database
Performance, 12th Intl. Conference on Information and
Knowledge Management, CIKM 2003.

[20] The Options Clearing Corporation: “Data Distribution Ser-
vice and Inbound FIXML”,
http://www.theocc.com/products/dds_ref_materials.jsp

[21] Oracle XML DB 10g
www.oracle.com/technology/tech/xml/xmldb

[22] Pat et al.: “Indexing XML Data Stored in a Relational Data-
base”, International Conference on Very Large Data Bases
(VLDB), 2004.

[23] K. Runapongsa, J. M. Patel, H. V. Jagadish, Y. Chen, and S.
Al-Khalifa: “The Michigan Benchmark: Towards XML
Query Performance Diagnostics”, Proceedings of the 29th
VLDB Conference, 2003.

[24] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I.
Manolescu and R. Busse: “XMark: A Benchmark for XML
Data Management”, International Conference on Very
Large Data Bases (VLDB), pp 974-985, August 2002.

[25] A. Schmidt, F. Waas, S. Manegold, M. L. Kersten: „A Look
Back on the XML Benchmark Project”, Intelligent Search
on XML, Vol. 2818 of LNCS/LNAI, pp 263-278, 2003.

[26] Toxgene Data Generator,
http://www.alphaworks.ibm.com/tech/toxgene

[27] Transaction Processing over XML (TPoX), XML Database
Benchmark, to http://tpox.sourceforge.net/, Jan 2007.

[28] XML on Wall Street, Financial XML Projects,
http://lighthouse-partners.com/xml

[29] XQuery Update Facility, W3C Working Draft, July 2006,
http://www.w3.org/TR/xqupdate/

[30] B. Yao, M. T. Özsu, and J. Keenleyside: “XBench - A Fam-
ily of Benchmarks for XML DBMSs”, EEXTT 2002 and
DiWeb 2002, LNCS Vol. 2590, pp. 162-164.

APPENDIX: QUERIES AND UPDATES
For the benchmark execution, parameter markers are used instead
of the literal values in the predicates (shown in bold). The input
function for a collection of documents can vary depending on the
database system used. For DB2 9 it is db2-fn:xmlcolumn.

Q1: get_order
declare namespace o="http://www.fixprotocol.org/FIXML-4-4";
for $ord in db2-fn:xmlcolumn("ORDER.ODOC")/o:FIXML
where $ord/o:Order/@ID="103415"
return $ord/o:Order

Q2: get_security
declare default element namespace "http://tpox-
benchmark.com/security";
for $s in db2-fn:xmlcolumn("SECURITY.SDOC")/Security
where $s/Symbol= "SFDBX"
return $s

Q3: customer_profile
declare default element namespace "http://tpox-
benchmark.com/custacc";
for $cust in db2-fn:xmlcolumn("CUSTACC.CADOC")/Customer
where $cust/@id=2009
return
 <Customer_Profile CUSTOMERID="{$cust/@id}">
 {$cust/Name}
 {$cust/DateOfBirth}
 {$cust/Gender}
 {$cust/Nationality}
 {$cust/CountryOfResidence}
 {$cust/Languages}
 {$cust/Addresses}
 {$cust/EmailAddresses}
 </Customer_Profile>

Q4: search_securities
declare default element namespace "http://tpox-
benchmark.com/security";
for $sec in db2-fn:xmlcolumn("SECURITY.SDOC")/Security
where
 $sec/SecurityInformation/*/Sector= "Energy" and
 $sec/PE[. >= 30 and . < 35] and
 $sec/Yield > 4.5
return
 <Security>
 {$sec/Symbol}
 {$sec/Name}
 {$sec/SecurityType}
 {$sec/SecurityInformation//Sector}
 {$sec/PE}
 {$sec/Yield}
 </Security>

Q5: account_summary
declare default element namespace "http://tpox-
benchmark.com/custacc";
for $cust in db2-fn:xmlcolumn("CUSTACC.CADOC")/Customer[

@id=1011]
return
<Customer>
 {$cust/@id}
 {$cust/Name}
 <Customer_Securities>
 { for $account in $cust/Accounts/Account
 return
 <Account ACCOUNT_ID="{$account/@id}"

 BALANCE="{$account/Balance/OnlineActualBal}">
 <Securities>
 {$account/Holdings/Position/Name}
 </Securities>
 </Account>}
 </Customer_Securities>
</Customer>

Q6: get_security_price
declare namespace s="http://tpox-benchmark.com/security";
for $s in db2-fn:xmlcolumn("SECURITY.SDOC")/s:Security
where $s/s:Symbol= "SFDBX"
return <print>The open price of the security
"{$s/s:Name/text()}" is {$s/s:Price/s:PriceToday/s:Open/text()}
dollars</print>

Q7: customer_max_order
declare default element namespace
"http://www.fixprotocol.org/FIXML-4-4";
declare namespace c="http://tpox-benchmark.com/custacc";
let $orderprice :=
for $ord in db2-fn:xmlcolumn("ORDER.ODOC")/FIXML/Order
for $cust in db2-fn:xmlcolumn("CUSTACC.CADOC")/c:Customer[
 @id=1011 and
 c:Accounts/c:Account/@id=$ord/@Acct/fn:string(.)]
return $ord/OrdQty/@Cash
return max($orderprice)

We have implemented each query in both pure XQuery and
SQL/XML notation. Here is Q1 in SQL/XML notation with pa-
rameter markers:

Q1: get_order_sqlxml
SELECT XMLQUERY
 ('declare namespace o="http://www.fixprotocol.org/FIXML-4-4";
 for $ord in $odoc/o:FIXML
 return $ord/o:Order' PASSING odoc AS "odoc")
FROM order
WHERE XMLEXISTS
 ('declare namespace o="http://www.fixprotocol.org/FIXML-4-4";
 $odoc/o:FIXML/o:Order[@ID=$id]'
 PASSING odoc AS "odoc", cast (? as varchar(10)) as "id")

Updates:

U1: close_account
UPDATE custacc
SET cadoc = XMLQUERY(' declare default element namespace"
http://tpox-benchmark.com/custacc";
 transform
 copy $c := $doc
 modify
(: don’t delete the account if the customer has only one account :)
 if (count($c/Customer/Accounts/Account) >= 2)
 then do delete
 $c/Customer/Accounts/Account[@id="104138966"]
 else ()
 return $c' PASSING cadoc AS "doc")
WHERE XMLEXISTS ('declare default element namespace
"http://tpox-benchmark.com/custacc";
$cadoc/Customer/Accounts/Account[@id="104138966"]'
PASSING cadoc AS "cadoc")

U2: open_account
UPDATE custacc
SET cadoc = XMLQUERY('declare default element namespace
"http://tpox-benchmark.com/custacc";
 transform
 copy $c := $doc
 modify
(: don’t add the account if it exceeds the max of seven accounts :)
 if (count($c/Customer/Accounts/Account) < 7)
 then do insert
 <Account id="104138966">
 <Category>9</Category>
 <Currency>YEN</Currency>
 <OpeningDate>2006-11-19</OpeningDate>
 (…) (: shortened for brevity. See [27]. :)
 </Account>
 into $c/Customer/Accounts
 else ()

return $c'
PASSING cadoc AS "doc")

WHERE XMLEXISTS ('declare default element namespace
"http://tpox-benchmark.com/custacc";
$cadoc/Customer[@id=1011]' PASSING cadoc AS "cadoc")

U3: price_change
UPDATE security
SET sdoc = XMLQUERY('declare default element namespace
"http://tpox-benchmark.com/security";
 transform
 copy $secdoc := $doc
 modify
 let $price := $secdoc/Security/Price
 let $newlasttrade := $price/PriceToday/Open*0.95
 return
 (do replace value of $price/LastTrade with $newlasttrade,
 do replace value of $price/Ask with $newlasttrade*1.01,
 do replace value of $price/Bid with $newlasttrade*0.99)
 return $secdoc' PASSING sdoc AS "doc")
WHERE XMLEXISTS('declare default element namespace
"http://tpox-benchmark.com/security";
$sdoc/Security[Symbol="VIVAX"]'
PASSING sdoc AS "sdoc")

U4: order_status
UPDATE order
SET odoc = XMLQUERY('declare default element namespace
"http://www.fixprotocol.org/FIXML-4-4";
 transform
 copy $o := $doc
 modify (
 do replace value of $o/FIXML/Order/@SolFlag with "N",
 do replace value of $o/FIXML/Order/Instrmt/@Src with "C")
 return $o' PASSING odoc AS "doc")
WHERE XMLEXISTS ('declare default element namespace
"http://www.fixprotocol.org/FIXML-4-4";
$doc/FIXML/Order[@ID="103415"]'
PASSING odoc AS "doc")

U5: buy_security
UPDATE custacc
SET cadoc = XMLQUERY('declare default element namespace
"http://tpox-benchmark.com/custacc"; declare namespace s =
"http://tpox-benchmark.com/security";
 transform
 copy $c := $doc
 modify
let $acct := $c/Customer/Accounts/Account[@id="104138966"]
let $actualbalance := $acct/Balance/OnlineActualBal
let $clearedbalance := $acct/Balance/OnlineClearedBal
let $workingbalance := $acct/Balance/WorkingBalance
let $mvaluedate := $acct/gValueDate/mValueDate[last()]
let $currentdate := fn:current-date()
(: need to get security information :)
let $sec := db2-fn:xmlcolumn("SECURITY.SDOC")/s:Security[

s:Symbol="OIIM"]
return (
(: don’t buy if it exceeds the maximum of 10 holdings per acc :)
 if (count($acct/Holdings/Position)=10 and
 count($acct/Holdings/Position[Symbol="OIIM"])=0)
then ()
else (
(: add new position if no shares of this security exist in this acc :)
if (count($acct/Holdings/Position[Symbol="OIIM"])=0) then
 do insert

<Position>
 <Symbol>{$sec/s:Symbol/text()}</Symbol>
 <Name>{$sec/s:Name/text()}</Name>
 <Type>{$sec/s:SecurityType/text()}</Type>
 <Quantity>50</Quantity>
</Position>

 into $acct/Holdings
(: if shares of this security existed in this acc, add the new shares:)
else
 do replace value of
 $acct/Holdings/Position[Symbol="OIIM"]/Quantity with
 $acct/Holdings/Position[Symbol="OIIM"]/Quantity + 50,
(: now update the account balances and timestamp :)
do replace value of $acct/LastUpdate with fn:current-dateTime(),
do replace value of $actualbalance with
 $actualbalance+(50*$sec/s:Price/s:Ask),
do replace value of $clearedbalance with
 $clearedbalance+(50*$sec/s:Price/s:Ask),

do replace value of $workingbalance with
 $workingbalance+(50*$sec/s:Price/s:Ask),
do replace $mvaluedate with

<mValueDate>
 <ValueDate>{$currentdate} </ValueDate>
 <CreditMovement>156882.77 </CreditMovement>
 <ValueDatedBal>45736.85 </ValueDatedBal>
</mValueDate>))

return $c'
 PASSING cadoc AS "doc")
WHERE XMLEXISTS ('declare default element namespace
"http://tpox-benchmark.com/custacc";
$cadoc/Customer/Accounts/Account[@id="104138966"]'
PASSING cadoc AS "cadoc")

U6: sell_security
UPDATE custacc
SET cadoc = XMLQUERY('declare default element namespace
"http://tpox-benchmark.com/custacc"; declare namespace s=
"http://tpox-benchmark.com/security";
 transform
 copy $c := $doc
 modify
let $acct := $c/Customer/Accounts/Account[@id="104138966"]
let $actualbalance := $acct/Balance/OnlineActualBal
let $clearedbalance := $acct/Balance/OnlineClearedBal
let $workingbalance := $acct/Balance/WorkingBalance
let $mvaluedate :=$acct/gValueDate/mValueDate[last()]
let $currentdate := fn:current-date()
(: need to get security information :)
let $sec := db2-fn:xmlcolumn("SECURITY.SDOC")/s:Security[

s:Symbol=$acct/Holdings/Position[1]/Symbol/fn:string(.)]
return (

 (: don’t sell if it depletes the last position in this account :)
if (count($acct/Holdings/Position) < 2 and
$acct/Holdings/Position[1]/Quantity <= 50) then ()
else (
(: delete the position if the sell redeems all shares held :)
if ($acct/Holdings/Position[1]/Quantity <= 50) then
 do delete $acct/Holdings/Position[1]
(: otherwise subtract the sold shares :)
else
 do replace value of $acct/Holdings/Position[1]/Quantity
 with $acct/Holdings/Position[1]/Quantity - 50,
(: now update the account balances and timestamp :)
do replace value of $acct/LastUpdate with fn:current-dateTime(),
do replace value of $actualbalance with
 $actualbalance - (50*$sec/s:Price/s:Bid),
do replace value of $clearedbalance with
 $clearedbalance - (50*$sec/s:Price/s:Bid),
do replace value of $workingbalance with
 $workingbalance - (50*$sec/s:Price/s:Bid),
do replace $mvaluedate with

<mValueDate>
 <ValueDate>{$currentdate} </ValueDate>
 <CreditMovement>156882.77 </CreditMovement>
 <ValueDatedBal>45736.85</ValueDatedBal>
</mValueDate>))

return $c' PASSING cadoc AS "doc")
WHERE XMLEXISTS ('declare default element namespace
"http://tpox-benchmark.com/custacc";
$cadoc/Customer/Accounts/Account[@id="104138966"]'
PASSING cadoc AS "cadoc")

The latest versions of the TPoX transactions, data and workload
driver are available at http://tpox.sourceforge.net/ .

